Multifractal Random Walks With Fractional Brownian Motion via Malliavin Calculus

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variations of the fractional Brownian motion via Malliavin calculus

Using recent criteria for the convergence of sequences of multiple stochastic integrals based on the Malliavin calculus, we analyze the asymptotic behavior of quadratic variations for the fractional Brownian motion (fBm) and we apply our results to the design of a strongly consistent statistical estimators for the fBm’s self-similarity parameter H. 2000 AMS Classi…cation Numbers: 60F05, 60H05, ...

متن کامل

Brownian and fractional Brownian stochastic currents via Malliavin calculus

By using Malliavin calculus and multiple Wiener-Itô integrals, we study the existence and the regularity of stochastic currents defined as Skorohod (divergence) integrals with respect to the Brownian motion and to the fractional Brownian motion. We consider also the multidimensional multiparameter case and we compare the regularity of the current as a distribution in negative Sobolev spaces wit...

متن کامل

Fractional Brownian motion, random walks and binary market models

We prove a Donsker type approximation theorem for the fractional Brownian motion in the case H > 1/2. Using this approximation we construct an elementary market model that converges weakly to the fractional analogue of the Black–Scholes model. We show that there exist arbitrage opportunities in this model. One such opportunity is constructed explicitly.

متن کامل

Random Walks and Brownian Motion

In today’s lecture we present the Brownian motion (BM). We start with an intuitive discussion, describing the BM as a limit of SRW. We present some of the BM properties and try to explain why we can expect these properties from a limit of SRW. We then give a formal definition for BM and prove such a process exists (Wiener 1923). Before the proof we give some important facts about the normal dis...

متن کامل

Random Walks and Brownian Motion

Tags for today's lecture: Donsker's invariance priciple, Stochastic integration, Itô's formula In this lecture we show an application of Donsker's invariance principle and then proceed to the construction of Itô's stochastic integral. We recall the definitions and give a simple example of an application of the invariance principle. Consider a random walk S n = Σ n i=1 x i with E(x) = 0, E(x 2) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2014

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2013.2296785